[LINK] Proposed power supply standard

Stephen Loosley stephen at melbpc.org.au
Thu Feb 22 04:33:46 AEDT 2007


It appears Australia might well adopt this power supply standard:

** High-efficiency power supplies for home computers and servers **
    By: Urs Hoelzle and Bill Weihl  for Google Inc., September 2006:

    <http://labs.google.com/papers.html>

Most likely, the computer you’re using wastes 30-40% of the electrical power it
consumes because it is using an inefficient power supply. It’s difficult to believe that
something as basic as a power supply could be responsible for that amount of waste,
but it’s true. The problem with power supplies is that they generate heat, which saps
away energy meant to power the computer. That happens when the power supply
converts AC current into the DC current needed by computers.

At Google, we run many computers in our data centers to serve your queries, so
energy conservation and efficiency are important to us. For several years we’ve
been developing more efficient power supplies to eliminate waste from power
supplies. Instead of the typical efficiencies of 60-70%, our servers’ power supplies
now run at 90% efficiency or better, cutting down the energy losses by a factor of
four.

We believe this energy-saving power supply technology can be applied to home
computers, too. So we’ve been working with Intel and other partners to propose a
new power supply standard. The opportunity for savings is immense — we estimate
that if deployed in 100 million PCs running for an average of eight hours per day, this
new standard would save 40 billion kilowatt-hours over three years, or more than $5
billion at California’s energy rates.

The technical changes we propose are very small and low-risk. For historical
reasons dating back to the original IBM PC in 1981, standard PC power supplies
provide multiple output voltages, most of which are no longer used directly in today’s
PCs. Back in 1981 the chips actually did need all these voltages. But those times
are long gone.

Why then do power supplies continue to be built to produce multiple voltages? The
answer is simple: because the standard never changed, and because the actual
voltage needs of many chips in a computer change every year as they become more
energy efficient themselves. But the changing voltage needs of chips are now met
by voltage regulator modules (VRMs) that computer manufacturers put on their
motherboards. These VRMs take one of these voltages (say, 5V) and transform
them down to the actual voltage needed (say, 1.7V) making multiple voltage output
capability of power supplies unnecessary.

Providing multiple output voltages complicates the design of power supplies, and it
makes it harder to build efficient power supplies. In essence, manufacturers have to
build four different power supplies: one each for +12V, -12V, 5V, and 3.3V outputs,
four power supplies in one.

Because each motherboard may draw different amounts of power on each voltage,
manufacturers overprovision the supply for each individual voltage in order to
support multiple options. Since power supplies are most efficient near their maximum
rated loads, this overprovisioning leads to lower efficiency. The VRMs (voltage
regulator modules) used internally are also a significant source of loss. Typical
current efficiencies (including power supply and VRM losses) are in the 55-60%
range today, i.e., power supplies use 65-80% more power than necessary.

Google servers, and the new PC standard we propose, use a simple 12V power
supply. The power supply generates a single voltage, and all other voltages required
by motherboard components will be generated on the motherboard itself via VRMs.

The net result of these changes is a dramatic improvement in efficiency (including
the power supply and the regulators) to about 85%, at virtually no cost. In other
words, you won’t have to pay more for a higher-efficiency PC, because the power
supply is actually getting simpler, not more complicated. By spending another $20 or
so extra, it is possible to use higher-quality components and achieve efficiencies well
over 90%.

You won’t be able to buy such computers for a while, and Google isn’t planning on
selling you any. But we’re working with industry partners such as Intel to make this
technology an open standard that everyone can use, and that all vendors hopefully
will adopt. It’s the right solution technically, and the right thing to do for the
environment.

If you'd like us to keep you posted on our progress, please send us a note at
efficient-psu at google.com.
--

Cheers people
Stephen Loosley
Victoria, Australia





More information about the Link mailing list